

2. Let EEM, and Los(E) consists of all fE MFI(E) such that 11fll00:=inf{M+[0,00): |f00|≤M a.e x in E} (equivalent functions are identified). Show that "inf" can be replaced by "min" in the above expression of 11fllos. Show that Los(E) is a Banach space, i.e. it is a normed vector space and each Canchy sequence (fm) in L_o(E) has a limit f in Loo(E), i.e. YENEOCZY $\|f_m - f_n\|_{\infty} < \varepsilon \quad \forall \quad m, n \not \supset \mathcal{N}.$ Rum J f (Los (E) S. Y. VZ70 J NEN S.K. $\|f_n - f\|_{\infty} < \varepsilon \quad \forall n \geqslant N.$

(Hint: Let An, Bm, n & Mo S. K If mIS II full as on E \ An, and I fun full S || fun full on E \ Bm, n Then A: = (UAn) U (UBm, n) & Mo and (fn (n)) new converges with limit denoted by f(n), V XEE \ A.) 3. Let (V, II. 1) be a normed vector space and $(V_n)_{n\in\mathbb{N}}$ Carichy in V. Let (V_{n_k}) ke a convergent subsequence of (vn) convergent to v. Showthat (Vn) converges to v. (Hint. Let 270 and take N, KENS.L. $||V_m - V_n|| < \varepsilon \forall m, n >, N$ and $\| v_{m_{\kappa}} - v \| < \varepsilon \forall \kappa \geqslant K.$ Consider m with the form n_k and apply the triangle - megnality).

4. Let
$$(V, ||.||)$$
 be of the property
 $x_{n+1} i_{f} = v_{n+1} V + n \in IV$ with
 $\sum_{n=1}^{\infty} ||V_{n}|| < +\infty$
 $x_{n} v_{i} = \sum_{n=1}^{\infty} v_{n} exists in V, i.e.$
 $\lim_{n \in \mathbb{N}} ||v - \sum_{n=1}^{\infty} v_{n}|| = 0$
 $\sum_{n \in \mathbb{N}} ||v - \sum_{n=1}^{\infty} v_{n}|| = 0$
Show that $(V, ||.||)$ is a Bomach space,
 $x_{n} v_{n} + (V, ||.||)$ is a Bomach space,
 $x_{n} v_{n} + (v_{n} + v_{n}) + \dots + (v_{n} - v_{n})$
 $\sum_{n \in \mathbb{N}} ||v_{n} - v_{n}|| < \frac{1}{2^{k}}, \forall m, n \ge N_{k}$
Then
 $v_{n} + (v_{n-1} - v_{n}) + \dots + (v_{n-1} - v_{n})$

is a convergent subseq. of $(\nu_n)_{m \in N}$. Apply Q3.

Q5^{*} Let
$$m(E) < +\infty$$
 and $0 \le f \in d(E)$; and, $\forall n \in N$,
 $A_n := \{x \in E : n \le f(x)\} \cap [-n, n]$
 $B_{n, k'} := \{x \in E : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n}\} \cap [-n, n]$
 $(k = 1, 2, \dots, n : 2^n)$
and $(q_n = n X_{A_n} + \sum_{k=1}^{n-2^n} \frac{k-1}{2^n} X_{B_{n, k'}} \in S_0(E)$
Show In At $0 \le (q_n T_n f)$ and $\forall E > 0$
 $\exists \int_{step}^{simple} f(m) \int_{step}^{simple} f(m) \int_{step}^{simple} f(m) \int_{step}^{simple} f(m) \int_{step}^{simple} f(x) \int_{st$